Optimization of Corneal Arcuate Incisions for Improved Refractive Outcomes and Correction of Astigmatism with a Dual-Pulse Femtosecond Laser

Presented by: Joaquin De Rojas, MD Center for Sight Sarasota, FL

Disclosures

- LENSAR (I, C)
- Johnson & Johnson Vision (I, C, S)
- SUN Pharmaceuticals (C, S)
- Carl Zeiss Meditech (C)
- Gore (C)
- Oculus Biologics (C)
- Advanced Euclidian Solutions (I, C)

I = Investigator

C = Consultant

S = Speaker

Introduction

- Femtosecond laser-assisted arcuate keratotomy (FSAK) is an effective method to reduce astigmatism during cataract surgery.
- The consistency and efficacy of FSAK can improve significantly when guided by well-designed nomograms.
- Various nomograms have been developed to be used specifically for femtosecond lasers.
- Optimization/refinements of the existing nomograms help improve their accuracy.
- The present study evaluated the outcomes of femtosecond laser-assisted AK performed with and without nomogram optimization in patients undergoing cataract surgery.

Purpose

Optimization of arcuate keratotomy (AK) construction was undertaken to drive the reduction of astigmatism and improvement of postoperative uncorrected visual acuity in patients undergoing cataract surgery with a dual-pulse femtosecond laser.

Methods

Study Design	Retrospective chart review.
Inclusion Criteria	Eyes with \leq 1.35 D corneal astigmatism and no ocular pathology other than cataract were included.
Study Procedure	 FSAK was performed with the ALLY Adaptive Cataract Treatment System (LENSAR, Orlando, FL). The outcomes of FSAK were assessed in two phases. In the first phase (N = 88 eyes), the Wörtz-Gupta formula using Veracity Software (Carl Zeiss Meditech, Dublin, CA) was used to construct AK and the outcomes were analyzed. In the second phase (N = 59 eyes), the Wörtz-Gupta formula was optimized within Veracity to construct AK, all Aks were opened at the time of surgery, and the outcomes were analyzed.
Outcome Measures	Preop and postop astigmatism, MRSE, UDVA at 4 to 6 weeks postoperative.

Methods: Vector Analysis

• Pre-optimization Vector analysis of refractive and keratometric changes^{1, 2}

Vector analysis of refractive and keratometric changes							
	88						
Proj	Mean	SD	Minimum	Maximum			
	Total	0.66	0.56	0.05	2.75		
Change in corneal (keratometric) astigmatism, D	along original steep keratometry meridian	0.34	0.67	-1.13	2.25		
	along Orthogonal to steep keratometry meridian	0.07	0.44	-0.83	2.12		
Percentage of keratomet	103.74%	375.18%	-2266%	2026.16%			
Efficacy ratio (ratio of SI/ to preoperative ke	68.97%	133.18%	-157.06%	608.83%			

1. Alpins N. Astigmatism analysis by the Alpins method. J Cataract Refract Surg. 2001 Jan;27(1):31-49.

2. Blehm C, Potvin R. Pseudophakic astigmatism reduction with femtosecond laser-assisted corneal arcuate incisions: a pilot study. Clin Ophthalmol. 2017 Jan 23;11:201-207.

Astigmatism Management (in Veracity)

F. Cataract Surgery

- A. Astigmatism Management
- B. Biometry Methods
- **C.** Toric Calculations
- D. Cataract Surgery Defaults
- E. Eligibility for Surgery
- F. Data Validation
- L. Surgically Induced Astigmatism
- M. Techniques and Methods
- N. Eye Image
- O. IOL Availability in ASC
- R. Patient Questionnaire for Cataract Surgery
- J. Operative Note Types
- K. Operative Notes -Documents
- L. Operative Notes Defaults >

N1. Wortz-Gupta: WTR adjustment (%)

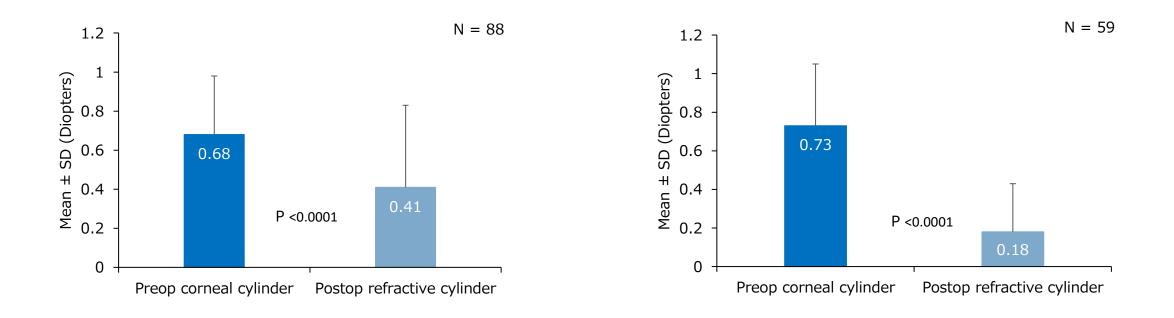
WTR decreased to 90% correction

90

N2. Wortz-Gupta: ATR adjustment (%)

120

ATR increased to 120% correction

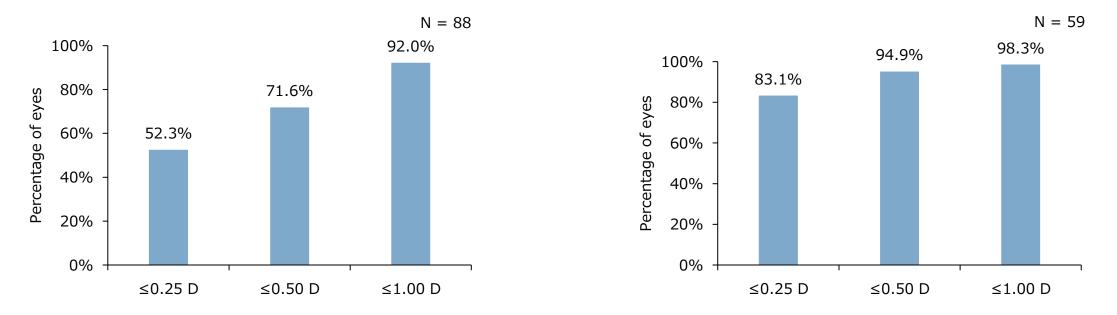

Enter the percentage of the standard Wortz-Gupta formula arcuate incision length that you would like to use for with-the-rule astigmatism. If you wish to use the exact Wortz-Gupta formula recommendation, enter 100. If you wish to decrease the effect by shortening the length of each arcuate incision, enter a number less than 100. If you wish to increase the effect by lengthening the incisions, enter a number greater than 100.

Enter the percentage of the standard Wortz-Gupta formula arcuate incision length that you would like to use for against-the-rule astigmatism. If you wish to use the exact Wortz-Gupta formula recommendation, enter 100. If you wish to decrease the effect by shortening the length of each arcuate incision, enter a number less than 100. If you wish to increase the effect by lengthening the incisions, enter a number greater than 100.

Results: Mean Astigmatism

Pre-optimization

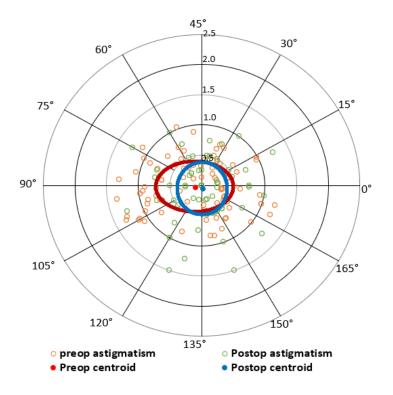
Post-optimization

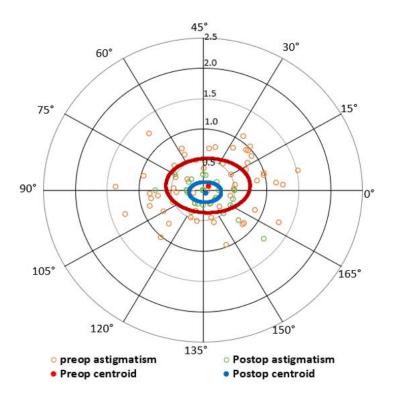


While astigmatism reduced from preop to postop in both groups, the mean reduction in astigmatism
was greater when the AKs were performed using the optimized nomogram.

Results: Residual Refractive Cylinder

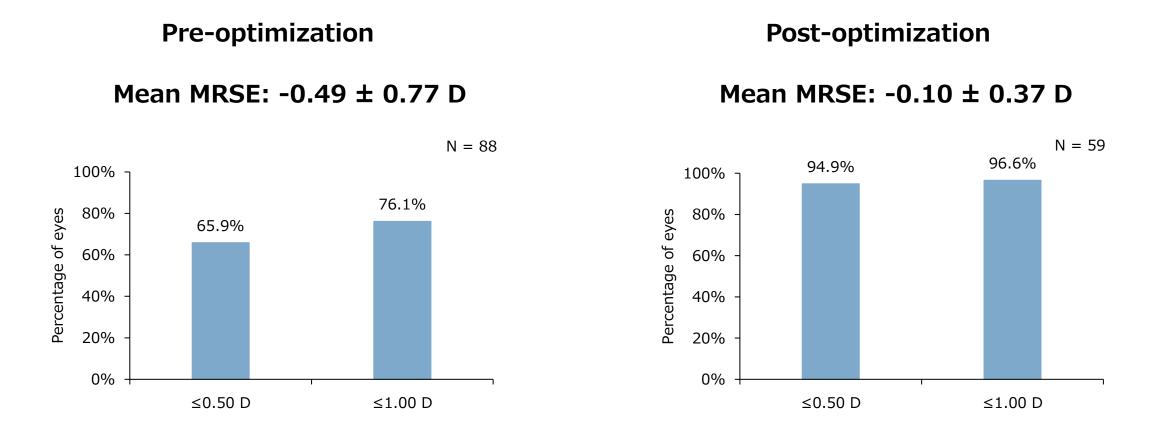
Pre-optimization residual refractive cylinder


Post-optimization residual refractive cylinder


The proportion of eyes achieving a postoperative residual cylinder within 0.5 D was higher (95% vs 72%) when AKs were performed using an optimized nomogram.

Results: Double-angle Vector Plot

Pre-optimization



Post-optimization

 AKs performed using the optimized nomogram resulted in a smaller vectoral standard deviation (represented by an ellipse) than when the AKs were performed without nomogram optimization.

Results: Postoperative MRSE

 Mean postop MRSE was less myopic and had a higher proportion of eyes achieving MRSE within 0.5 D when the AKs were performed using the optimized nomogram.

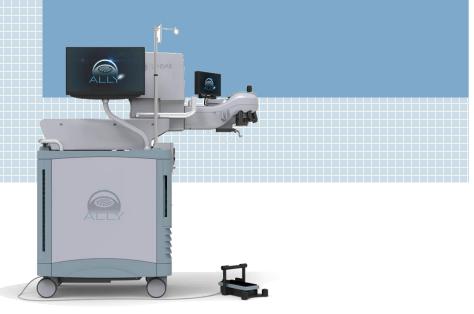
Results: Postoperative UDVA

Pre-optimization


N = 8897.7% 100.0% 77.3% 80.7% 83.0% 87.5% 100% Percentage of eyes 80% 67.0% 60% 46.6% 40% 20% 0% 20/20 20/25 20/32 20/40 20/50 20/60 20/100 20/200 or or or or or or or or better better better better better better better better

Mean UDVA: $0.16 \pm 0.25 \log MAR$

Post-optimization


Mean UDVA: $0.01 \pm 0.11 \log MAR_{N-5}$

N = 57

• AK performed with the optimized nomogram showed excellent visual outcomes, with 96.5% of eyes achieving postoperative UDVA 20/32 or better compared to 77.3% without nomogram adjustment.

Discussion and Conclusion

- Evaluating the outcomes of FSAK ensures consistency, enables continuous quality improvements, and guides surgeons in refining the nomogram.
- The use of the Wörtz-Gupta formula (in the first phase) to construct AKs showed good results, however, with room for further improvement. Only about 1/3 surgeons opened up arcuate incisions at time of surgery.
- In the second phase, the existing nomogram was optimized for arc length and was used to construct AKs. All surgeons (3/3) opened up arcuate incisions at time of surgery.
 - Outcomes of FSAK performed with the optimized nomogram resulted in excellent astigmatic outcomes.
 - In addition, the use of an optimized nomogram resulted in improved UDVA in these patients compared to patients who underwent AK without nomogram adjustments.
- Nomogram-based planning tool of LENSAR's ALLY dual-pulse femtosecond laser offers convenient AK planning and optimizes outcomes by allowing modifications in the pre-programmed nomogram data.
- Wireless data transmission from digital devices to the ALLY laser allows for a quick iris registration process and the placement of AK incisions at the exact location of astigmatism with no cyclotorsion errors.

Thank You