Evaluation of Visual and Astigmatic Outcomes following Femtosecond Laser-Assisted Arcuate Incisions and Implantation of Wavefront-Designed Monofocal IOLs

Presented by: P DEE STEPHENSON, MD, FACS

**President American College of Eye Surgeons** 

**Stephenson Eye Associates** 

eyedrdee@aol.com

## DISCLOSURES



# INTRODUCTION

- Management of preexisting corneal astigmatism during cataract surgery is vital to achieving excellent visual outcomes and meeting patients' expectations for complete, spectacle-free visual rehabilitation.<sup>1</sup>
- Arcuate keratotomy is an effective and low-cost method of reducing low levels of preexisting astigmatism.
- With the use of femtosecond lasers:
  - the location, depth and extent of the incisions can be more precisely controlled, improving predictability and reproducibility, as well as preventing inadvertent full-thickness perforation.
- The introduction of iris registration technology with femtosecond lasers provides highly precise guidance for the alignment of astigmatic correction.



 To evaluate the visual and refractive outcomes of femtosecond laser-assisted arcuate incisions (LENSAR) for the correction of low to moderate astigmatism in patients undergoing cataract surgery or refractive lens exchange (RLE) with the implantation of wavefront-designed aspheric intraocular lenses.

### **METHODS**

STUDY DESIGN

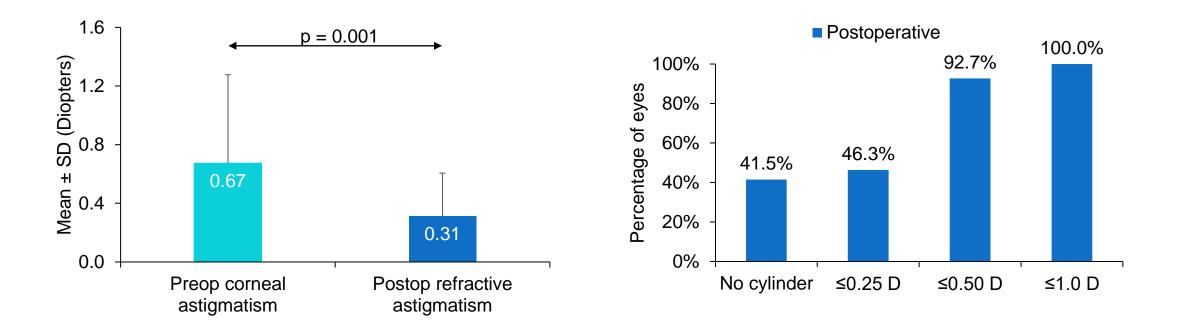
Retrospective chart review.

#### STUDY POPULATION

35 patients (41 eyes) who underwent femtosecond laserassisted arcuate incisions for correcting pre-existing astigmatism, combined with cataract extraction or Refractive lens exchange.

#### RECRUITMENT CRITERIA

Pre-existing low to moderate regular corneal astigmatism (≥0.25 D to ≤2.00 D); Implantation of an aspheric monofocal IOL (Rayner 200E, Zeiss CT Lucia 611P or B+L enVista MX60E or MX60PL).

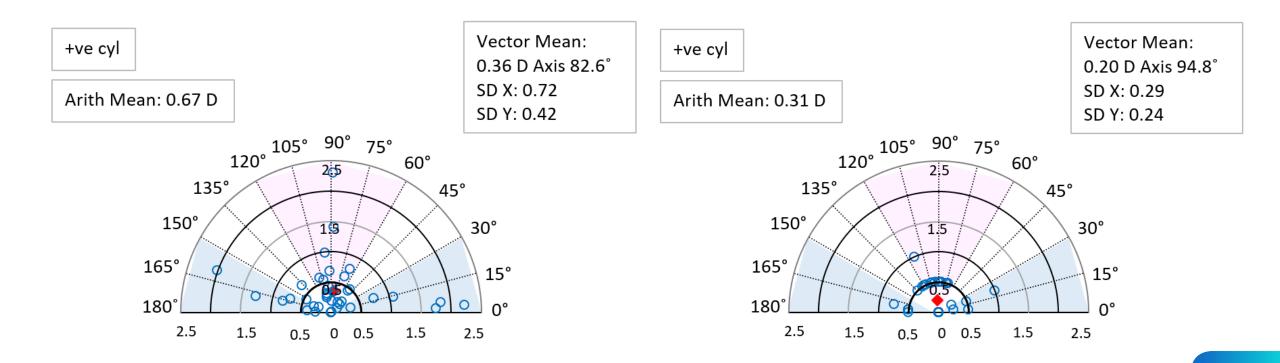

#### OUTCOME MEASURES

MRSE, residual refractive astigmatism, UDVA, UIVA, UNVA and vector analysis of the effectiveness of astigmatism reduction.





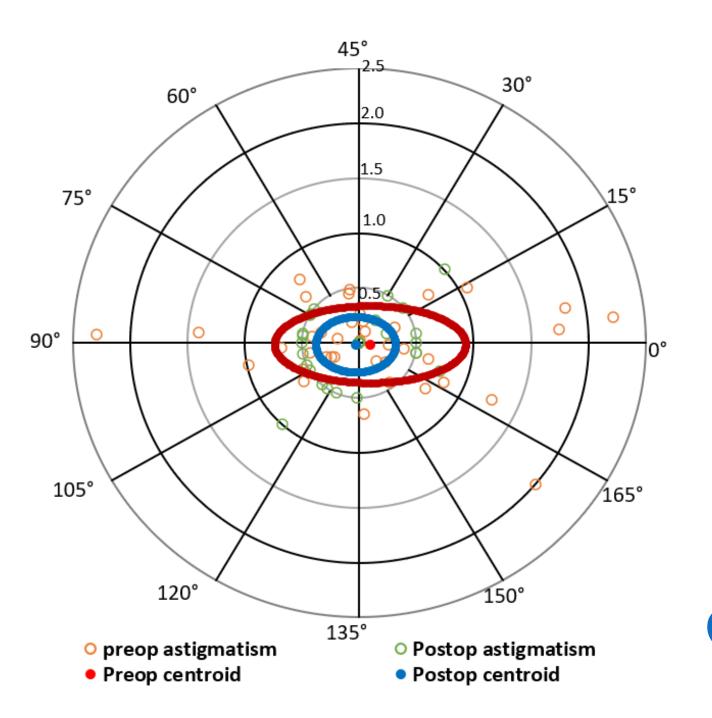
#### Preop corneal vs postop refractive astigmatism




There was a statistically significant reduction in astigmatism from preop to postop, with 93% of eyes achieving postop refractive cylinder within 0.5 D.



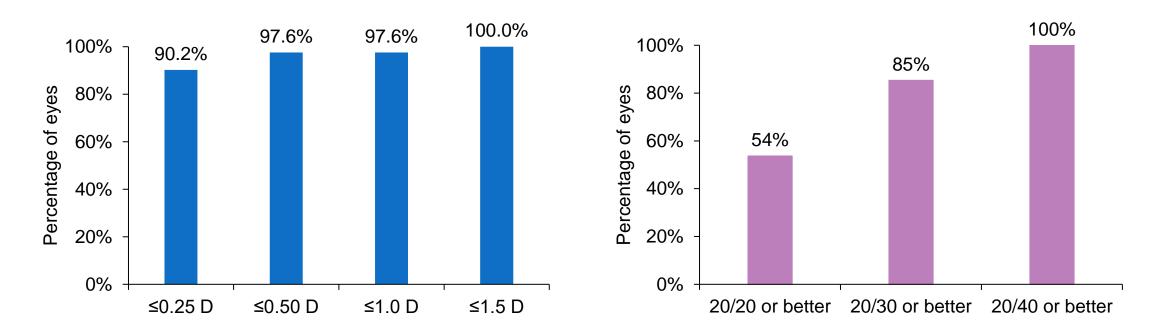
#### **Preoperative corneal astigmatism**


#### **Postoperative refractive astigmatism**



Vectoral mean of astigmatism decreased from 0.36 D preoperatively to 0.20 D postoperatively.

# RESULTS


 Centroid of postop astigmatism was closer to 0.0 D and had a smaller vectoral standard deviation (represented by ellipse).





#### Postoperative MRSE Mean: -0.09 ± 0.26 D

#### Postoperative UDVA Mean: 0.08 ± 0.11 logMAR



Postoperatively, 98% of eyes had MRSE within 0.5 D & 85% of eyes had UDVA of 20/30 or better.



#### Postoperative UIVA Mean: 0.20 ± 0.11 logMAR

#### Postoperative UNVA Mean: 0.39 ± 0.25 logMAR



UIVA and UNVA of 20/40 or better were achieved in 95% and 44% of eyes, respectively.





|                         |    | Preoperative<br>astigmatism<br>(D) | Postoperative<br>astigmatism<br>(D) |                     | Postoperative<br>MRSE<br>(D) |                     |
|-------------------------|----|------------------------------------|-------------------------------------|---------------------|------------------------------|---------------------|
|                         | N  | Mean ± SD                          | Mean ± SD                           | Within 0.5 D<br>(%) | Mean ± SD                    | Within 0.5 D<br>(%) |
| Overall                 | 41 | $0.67 \pm 0.60$                    | 0.31 ± 0.29                         | 92.7%               | -0.90 ± 0.26                 | 97.6%               |
| Rayner 200E             | 9  | 0.61 ± 0.72                        | 0.42 ± 0.31                         | 88.9%               | -0.15 ± 0.28                 | 100.0%              |
| enVista MX60E or MX60PL | 24 | $0.65 \pm 0.46$                    | 0.29 ± 0.30                         | 91.7%               | -0.09 ± 0.28                 | 95.8%               |
| Zeiss CT Lucia 611P     | 8  | $0.82 \pm 0.88$                    | 0.25 ± 0.27                         | 100.0%              | 0.00 ± 0.13                  | 100.0%              |





|                            |    | Postoperative UDVA<br>(logMAR) |                        | Postoperative UIVA<br>(logMAR) |                        | Postoperative UNVA<br>(logMAR) |                        |
|----------------------------|----|--------------------------------|------------------------|--------------------------------|------------------------|--------------------------------|------------------------|
|                            | N  | Mean ± SD                      | 20/30 or better<br>(%) | Mean ± SD                      | 20/40 or better<br>(%) | Mean ± SD                      | 20/40 or better<br>(%) |
| Overall                    | 41 | 0.08 ± 0.11                    | 85%                    | 0.20 ± 0.11                    | 95%                    | 0.39 ± 0.25                    | 44%                    |
| Rayner 200E                | 9  | 0.15 ± 0.13                    | 67%                    | 0.16 ± 0.14                    | 100%                   | 0.26 ± 0.28                    | 56%                    |
| enVista MX60E or<br>MX60PL | 24 | 0.06 ± 0.10                    | 92%                    | 0.20 ± 0.11                    | 96%                    | 0.39 ± 0.24                    | 50%                    |
| Zeiss CT Lucia 611P        | 8  | 0.07 ± 0.13                    | 88%                    | 0.21 ± 0.09                    | 88%                    | 0.51 ± 0.20                    | 13%                    |

# DISCUSSION

- Wavefront-designed IOLs that either increase spherical aberrations or maintain most of the corneal spherical aberrations, provide an improved range of vision.
- Patients with no astigmatism are generally considered ideal candidates for implantation of wavefront-designed monofocal IOLs, leading to excellent visual acuity and contrast sensitivity.<sup>1</sup>
- The present study intended to evaluate the optical performance of wavefront-designed monofocal IOLs when implanted in conjunction with arcuate keratotomy for the correction of pre-existing astigmatism.
- LENSAR laser-assisted arcuate keratotomy with the implantation of wavefront-designed monofocal IOLs resulted in excellent distance vision outcomes and functional intermediate vision.



 Femtosecond laser-assisted arcuate incisions were effective in correcting low to moderate astigmatism, yielding excellent visual and refractive outcomes with different wavefront-designed aspheric IOLs.



# THANK YOU

